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A High-Altitude Divert Architecture for 

Low Ballistic Coefficient Vehicles at Mars 

Future Mars missions seek to increase landed mass and accuracy  

-- Increasing landed mass can be accomplished with low ballistic coefficient (low-β) 

hypersonic vehicles and supersonic retropropulsion (SRP) 

-- Past efforts have tended to focus precision landing efforts on hypersonic and 

propulsive terminal descent guidance 

 --May be physically difficult to implement a guided hypersonic entry system on a 

large low-β vehicle 

 -- Large propulsive diverts performed solely in the terminal phase of flight require 

considerable propellant and reduce payload mass 

-- It is postulated that decoupling the divert maneuver from a traditional 

propulsive terminal descent maneuver reduces the propellant required to 

achieve precision landings.  

-- Low-β vehicles decelerate higher in the atmosphere, possibly allowing for more 

timeline and altitude to perform such a divert maneuver.   

-- This study will assess the propellant mass required and accuracy of an 

architecture utilizing a low-β vehicle and a divert maneuver. 

Introduction 
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Architecture Description 

Dispersed Performance 

Nominal Results - Divert Performance 

1000 Monte Carlo runs, with relevant dispersions on the entry state, atmosphere/winds, 

mass, and aerodynamics, were used to assess the performance of the architecture 

 

System-Level Consideration: Payload Mass Trade 

Reference Mission 

A Mars Science Laboratory (MSL) vehicle with a mass of 3300 kg will be simulated: 

Conclusions and Future Work 

For β ≤ 10 kg/m2, landed range error under 1 km can be achieved. The primary sources 

of range error are parachute drag uncertainty and winds. The propellant mass fraction 

required for these diverts is at most 5% greater than for cases that do not use a divert 

(only gravity turn). 

 

Note: Range footprints are symmetric about the crossrange = 0 km axis.  Propellant 

mass fraction is defined as the mass of propellant for both the divert and propulsive 

gravity turn over the total entry mass 
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-- This architecture was compared to one where instead of the divert, an optimal 

terminal descent initiated at Mach 0.8 to the target (same footprint for all  β’s) 

-- As β decreases, time for the maneuver increases, and greater range is achieved 

 

 
-- Propellant mass fractions are reduced by 25% compared to the traditional architectures 

 

 

-- The EDL architecture proposed here has shown potential as one that can 

enable precision landing for vehicles on Mars without the use of guided entry.  

-- For entry systems with β ≤ 10 kg/m2, landed accuracies up to 1 km can be 

attained, for a total propellant mass fraction of 15%, only 5% more than needed 

without the divert. 

-- Future work will involve studies of different mission types, including ones with 

guided entry and SRP.  The SRP mission type is of interest, as it already is a 

propulsion-intensive architecture. Further system considerations, such as thruster 

size, range and PMF sensitivities to initial conditions, and configuration options will be 

assessed, with a focus on mission design. 

Solid lines - with divert  

Dashed lines - without 

divert (only gravity turn) 
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Payload Mass 

Trade 

Mass contribution of 

precision landing system 

Other considerations 

MSL Style 

Architecture 

18% of total entry mass (300 

kg ballast for lifting entry, 300+ 

kg propellant for landing) 

RCS and necessary prop. add 

mass (may be worse for large 

low-β vehicles)  

High-Altitude 

Divert Architecture 

15% of total entry mass (prop. 

needed for divert maneuver 

and gravity turn at 99th %-tile) 

Additional large engines and 

prop. tanks add mass 

Architecture Flight Regime Approach 

Ballistic entry: V125 km = 6.1 km/s 

and γ125 km  = -15.5° 

70° sphere-cone with increased diameter to 

decrease ballistic coefficient 

High-altitude divert maneuver 4 x 2 Mars Landing Engines (MLEs, Thrust = 

3100 N) spread equally around vehicle 

Aerodynamic decelerator 19.7 m Disk-Gap-Band parachute (MSL) 

Propulsive gravity turn 8 MLEs  (MSL)  

Nominal Trajectories 

1 kg/m2 

h0 = 42 km 

5 kg/m2 

h0 = 33 km 

10 kg/m2 

h0 = 28 km 

50 kg/m2 

h0 = 16 km 
Mach 0.8 

Propulsive 

Landing (for 

comparison) 

Landed Footprint of Divert Architectures 
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